
BIG DATA ANALYTICS USING R
B.A / B.Com (Hons) THIRD YEAR

SEMESTER – V

Lesson Writers

Dr. U. Surya Kameswari
 M.Sc CS, M.Tech IT., Ph.D
Assistant Professor
Department of Computer Science and
Engineering University College of sciences
Acharya Nagarjuna University

Dr. B. Reddaiah, M.E., Ph.D.
Associate Professor
Department of Computer Science and
Technology
Yogi Vemana University
Kadapa-516005

Mr. G V Suresh, M.Tech., (Ph.D)
Associate professor
Department of Computer Science and
Engineering Lakireddy Balireddy College
of Engineering (Autonomous)
Mylavaram

Mrs. A. Sarvani, M.Tech., (Ph.D)
Associate professor
Department of Information Technology
Lakireddy Balireddy College of
Engineering (Autonomous)
Mylavaram

Editor
Dr. K. Lavanya B.E., M.Tech, Ph.D

Assistant professor
Department of Computer Science and Engineering

University College of sciences
Acharya Nagarjuna University

Email: dr.lavanyakampa@gmail.com

Director

Prof.V.VENKATESWARLU
 M.A.(Soc), M.S.W., M.Phil., Ph.D.

CENTRE FOR DISTANCE EDUCATION
ACHARYA NAGARJUNA UNIVERSITY

NAGARJUNA NAGAR-522510
website: anucde.info

e-mail: anucdedirector@gmail.com

B.Com (CA): Big Data Analytics Using R

First Edition: 2024

No. of Copies

(C) Acharya Nagarjuna University

This book is exclusively prepared for the use of students of B.Com , Centre for Distance

Education, Acharya Nagarjuna University and this book is mean for limited circulation

only

Published by

Prof.V.Venkateswarlu

Director

Centre for Distance Education

Acharya Nagarjuna University

Nagarjuna Nagar-522510

Printed at

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging
ahead in the path of progress and dynamism, offering a variety of courses and
research contributions. I am extremely happy that by gaining ‘A’ grade from the
NAAC in the year 2016, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from
over 443 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04
with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.A., and B.Com courses at the Degree level and M.A., M.Com., M.Sc.,
M.B.A., and L.L.M., courses at the PG level from the academic year 2003-2004
onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact
classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for

Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-
writers of the Centre who have helped in these endeavours.

 Prof. K.Gangadhar Rao
 Vice-Chancellor
 Acharya Nagarjuna University

Course-6A: Big Data Analytics Using R ----Lab
(Practical)

Centre for Distance Education Acharya Nagarjuna University

LAB Exercise 1:

Download and install R-Programming environment

R programming is a very popular language and to work on that we have to install two things,
i.e., R and RStudio. R and RStudio works together to create a project on R.

Installing R to the local computer is very easy. First, we must know which operating system we
are using so that we can download it accordingly.

The official site https://cloud.r-project.org provides binary files for major operating systems
including Windows, Linux, and Mac OS. In some Linux distributions, R is installed by default,
which we can verify from the console by entering R.

To install R, either we can get it from the site https://cloud.r-project.org or can use commands
from the terminal.

There are following steps used to install the R in Windows:

1.1 Installation of R for Windows Setup

Step 1:

First, we have to download the R setup from https://cloud.r-project.org/bin/windows/base/.

Big Data Analytics using R Big Data Analytics using R Lab

Step 2:

When we click on Download R 4.3.3 for windows, our downloading will be started of R setup.
Once the downloading is finished, we have to run the setup of R in the following way:

1) Select the path where we want to download the R and proceed to Next.

Click on Next

Centre for Distance Education Acharya Nagarjuna University

Select all components which we want to install, and then we will proceed to Next.

In the next step, we have to select either customized startup or accept the default, and then we

proceed to Next.

Big Data Analytics using R Big Data Analytics using R Lab

 When we proceed to next, our installation of R in our system will get started:

Centre for Distance Education Acharya Nagarjuna University

In the last, we will click on Finish to successfully install R in our system.

1.2 RStudio IDE

RStudio is an integrated development environment which allows us to interact with R more

readily. RStudio is similar to the standard RGui, but it is considered more user-friendly. This

IDE has various drop-down menus, Windows with multiple tabs, and so many customization

processes.

Big Data Analytics using R Big Data Analytics using R Lab

Installation of RStudio

RStudio Desktop is available for both Windows and Linux. The open-source RStudio Desktop

installation is very simple to install on both operating systems. The licensed version of RStudio

has some more features than open-source.

On Windows and Linux, it is quite simple to install RStudio. The process of installing RStudio in

both the OS is the same. There are the following steps to install RStudio in our Windows/Linux:

Step 1:

In the first step, we visit the RStudio official site and click on Download RStudio.

Step 2:

In the next step, we will select the RStudio desktop for open-source license and click on

download.

Centre for Distance Education Acharya Nagarjuna University

Step 3:

In the next step, we will select the appropriate installer. When we select the installer, our

downloading of RStudion setup will start.

Step 4:

In the next step, we will run our setup in the following way:

Big Data Analytics using R Big Data Analytics using R Lab

1) Click on Next.

2) Click on Install.

Centre for Distance Education Acharya Nagarjuna University

3) Click on finish.

4) RStudio is ready to work.

Big Data Analytics using R Big Data Analytics using R Lab

The first time when we open RStudio, we will see three Windows. The fourth Window will be

hidden by default. We can open this hidden Window by clicking the File drop-down menu,

then New File and then R Script

Centre for Distance Education Acharya Nagarjuna University

LAB EXERCISE 2:

Create a vector in R and perform operations on it.

PROGRAM DESCRIPTION

Vectors are the most basic R data objects and there are six types of atomic vectors. They are

logical,integer, double, complex, character and raw.

SOURCE CODE

Creating a vector

vect<- c(2, 4, 6, 8, 10)

Displaying the original vector

print("Original Vector:")
print(vect)

Accessing elements in the vector

print("Accessing elements in the vector:")
print("First element:", vect[1])
print("Third element:", vect[3])

Modifying an element in the vector

print("Modifying an element in the vector:")
vect[2] <- 12
print(vect)

Adding new elements to the vector

print("Adding new elements to the vector:")
vect<- c(vect, 14, 16)
print(vect)

Removing elements from the vectorprint("Removing elements from the vector:")

Big Data Analytics using R Big Data Analytics using R Lab

vect<- vect[-3]
print(vect)

Performing operations on the vectorprint("Performing operations on the vector:")

sum_result<- sum(vect)
mean_result<- mean(vect)
print(paste('Sum:',sum_result))
print(paste("Mean:",mean_result))

OUTPUT

[1] "Original Vector:"
[1] 2 4 6 8 10
[1] "Accessing elements in the vector:"
[1] "First element:"
[1] "Third element:"
[1] "Modifying an element in the vector:"
[1] 2 12 6 8 10
[1] "Adding new elements to the vector:"
[1] 2 12 6 8 10 14 16
[1] 2 12 8 10 14 16
[1] "Sum: 62"
[1] "Mean: 10.3333333333333"

Centre for Distance Education Acharya Nagarjuna University

LAB EXERCISE 3:

Create integer, complex, logical, character data type objects in R and print
their values and their class using print and class functions.

PROGRAM DESCRIPTION

Atomic data types are the object types which you can create (atomic) vectors with them.

There are several functions that can show you the data type of an R object, such as type of,

mode, storage. Mode, class and str.

If we want to print the R data type, we recommend using the type of function.

There are other functions that allow you to check if some object belongs to some data type,

returning TRUE or FALSE. As a rule, these functions start with is followed by the data type.

SOURCE CODE

creating objects of different data types

integer_object<- 15L

complex_object<- 8 + 2i

logical_object<- TRUE

character_object<- "Acharya Nagarjuna University"

Printing values and classes

print(integer_object)

print(class(integer_object))

print(complex_object)

print(class(complex_object))

print(logical_object)

Big Data Analytics using R Big Data Analytics using R Lab

print(class(logical_object))

print(character_object)

print(class(character_object))

OUTPUT

[1] 15

[1] "integer"

[1] 8+2i

[1] "complex"

[1] TRUE

[1] "logical"

[1] " Acharya Nagarjuna University "

[1] "character"

Centre for Distance Education Acharya Nagarjuna University

LAB EXERCISE 4:

Write code in R to demonstrate sum(), min(), max() and seq() functions

PROGRAM DESCRIPTION

sum(): This function calculates the sum of all the elements in a numeric vector. It's useful for

obtaining the total of a set of values, such as sales figures, test scores, or any other numeric data.

min(): The min() function returns the smallest value in a vector. It's handy for finding the

minimum value in a dataset, which could represent, for example, the lowest temperature in a

week or the cheapest product price in a list.

max(): Conversely, max() returns the largest value in a vector. It's useful for identifying the

maximum value within a dataset, such as the highest temperature in a week or the most

expensive item in a list.

seq(): This function generates a sequence of numbers according to specified parameters. It's

commonly used to create sequences of integers, either incrementing or decrementing, which can

be useful for generating indices, iterating over loops, or creating numeric ranges for analysis or

visualization.

SOURCE CODE

Create a numeric vector

numeric_vector<- c(3, 7, 1, 9, 4, 6)

Calculate the sum of elements in the vector

total<- sum(numeric_vector)

print(paste("Sum of elements:", total))

Find the minimum value in the vector

minimum<- min(numeric_vector)

Big Data Analytics using R Big Data Analytics using R Lab

print(paste("Minimum value:", minimum))

Find the maximum value in the vector

maximum<- max(numeric_vector)

print(paste("Maximum value:", maximum))

Generate a sequence of numbers from 1 to 10

sequence<- seq(1, 10)

print(paste("Sequence from 1 to 10:", sequence))

OUTPUT

[1] "Sum of elements: 30"

[1] "Minimum value: 1"

[1] "Maximum value: 9"

[1] "Sequence from 1 to 10: 1" "Sequence from 1 to 10: 2"

[3] "Sequence from 1 to 10: 3" "Sequence from 1 to 10: 4"

[5] "Sequence from 1 to 10: 5" "Sequence from 1 to 10: 6"

[7] "Sequence from 1 to 10: 7" "Sequence from 1 to 10: 8"

[9] "Sequence from 1 to 10: 9" "Sequence from 1 to 10: 10"

Centre for Distance Education Acharya Nagarjuna University

LAB EXERCISE 5:

Write code in R to manipulate text in R using grep(), toupper(), tolower() and
substr() functions.

PROGRAM DESCRIPTION

grep() : is used to search for a pattern within a character vector or a file. It returns the indices of

the elements in the vector that contain the specified pattern.

toupper(): converts all the characters in a character vector to uppercase. It's useful when you

want to standardize the case of text data for consistency or comparison purposes.

tolower() : converts all the characters in a character vector to lowercase. It's helpful for

standardizing text data to a uniform case.

substr(): extracts substrings from elements in a character vector. It takes arguments specifying

the vector, the starting position, and optionally, the number of characters to extract. It's useful for

extracting specific portions of text, such as extracting a portion of a string based on position.

SOURCE CODE

Sample text

text<- "Acharya Nagarjuna University is the one of the best University in India which is a state university

established in 1976"

grep(): Finding patterns in text

pattern<- "University"

matching_indices<- grep(pattern, text)

print(paste("Indices of 'University' in text:", matching_indices))

Big Data Analytics using R Big Data Analytics using R Lab

toupper(): Converting text to uppercase

uppercase_text<- toupper(text)

print(paste("Uppercase text:", uppercase_text))

tolower(): Converting text to lowercase

lowercase_text<- tolower(text)

print(paste("Lowercase text:", lowercase_text))

substr(): Extracting substrings

substring<- substr(text, start = 1, stop = 12)

print(paste("Substring:", substring))

OUTPUT

[1] "Indices of 'University' in text: 1"

[1] "Uppercase text: ACHARYA NAGARJUNA UNIVERSITY IS THE ONE OF THE BEST

UNIVERSITY IN INDIA WHICH IS A STATE UNIVERSITY ESTABLISHED IN 1976"

[1] "Lowercase text: acharyanagarjuna university is the one of the best university in india which is a state

university established in 1976"

[1] "Substring: Acharya Naga"

Centre for Distance Education Acharya Nagarjuna University

LAB EXERCISE 6:

Create data frame in R and perform operations on it.

PROGRAM DESCRIPTION

A data frame is a fundamental data structure in R used for storing and manipulating structured

data. It allows for the representation and analysis of tabular data, where each column can have a

different data type.

Common operations on data frames include creating, accessing, modifying, and analyzing data.

This involves tasks such as selecting specific columns or rows, adding new columns, filtering

data based on conditions, sorting, merging, and performing summary statistics. These operations

enable users to manage and extract meaningful insights from their data efficiently.

SOURCE CODE:

Create a data frame

students<- data.frame(

 Name = c("Srinivas", "Surya", "Shourya", "Rohit", "Arya"),

 Age = c(22,24,20,22,21),

 Grade = c("A", "C", "B", "A", "B")

)

Print the data frame

print("Original Data Frame:")

print(students)

Accessing specific columns

print("Names of the students:")

print(students$Name)

Big Data Analytics using R Big Data Analytics using R Lab

Adding a new column

students$Gender<- c("Female", "Male", "Male", "Male", "Female")

print("Data Frame with Gender:")

print(students)

Filtering rows based on condition

print("Students with Grade A:")

print(subset(students, Grade == "A"))

Sorting the data frame by age

print("Data Frame sorted by Age:")

print(students[order(students$Age),])

Calculating summary statistics

print("Summary Statistics:")

print(summary(students$Age))

OUTPUT:

[1] "Original Data Frame:"

 Name Age Grade

1 Srinivas 22 A

2 Surya 24 C

3 Shourya 20 B

4 Rohit 22 A

5 Arya 21 B

[1] "Names of the students:"

[1] "Srinivas" "Surya" "Shourya" "Rohit" "Arya"

Centre for Distance Education Acharya Nagarjuna University

[1] "Data Frame with Gender:"

 Name Age Grade Gender

1 Srinivas 22 A Female

2 Surya 24 C Male

3 Shourya 20 B Male

4 Rohit 22 A Male

5 Arya 21 B Female

[1] "Students with Grade A:"

 Name Age Grade Gender

1 Srinivas 22 A Female

4 Rohit 22 A Male

[1] "Data Frame sorted by Age:"

 Name Age Grade Gender

3 Shourya 20 B Male

5 Arya 21 B Female

1 Srinivas 22 A Female

4 Rohit 22 A Male

2 Surya 24 C Male

[1] "Summary Statistics:"

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 20.0 21.0 22.0 21.8 22.0 24.0

Big Data Analytics using R Big Data Analytics using R Lab

LAB EXERCISE 7:

Import data into R from text and excel files using read.table () and read.csv ()
functions.

PROGRAM DESCRIPTION

Upon the termination of a program, all data is lost. Our data will remain intact even if the
program terminates if it is saved to a file. If we are required to submit a substantial quantity of
data, the process will consume many hours. But in the event that we possess a file encompassing
the entirety of the data, we can effortlessly retrieve its contents by executing a few commands in
R. It is simple and error-free to transfer data from one computer to another. In order to enable the
storage of those assets in a multitude of formats. The data could potentially be stored in a tabular
format (e.g., comma-separated values) or a text file (i.e., txt), csv, or on the cloud or the internet.

read.table(): it is a general function that can be used to read a file in table format. The data will

be imported as a data frame.

Syntax: read.table(file, header = FALSE, sep = “”, dec = “.”)

read.csv() is used for reading “comma separated value” files (“.csv”). In this also the data will

be imported as a data frame.

Syntax: read.csv(file, header = TRUE, sep = “,”, dec = “.”, …)

SOURCE CODE: Importing data from a text file using read.table():

Import data from a text file

Text_data<- read.table("StudentsPerformance.txt", header = TRUE, sep = "\t")
head(text_data)

OUTPUT:

Centre for Distance Education Acharya Nagarjuna University

SOURCE CODE: Importing data from a CSV file using read.csv():

Import data from a CSV file

csv_data<- read.csv("StudentsPerformance.csv")

head(csv_data)

OUTPUT:

Big Data Analytics using R Big Data Analytics using R Lab

LAB EXERCISE 8:

Write code in R to find out whether number is prime or not.

PROGRAM DESCRIPTION

The code defines a function is_prime() that takes a number num as input and returns TRUE if the

number is prime, and FALSE otherwise.

The function checks whether the input number is less than or equal to 1, in which case it returns

FALSE, as numbers less than or equal to 1 are not prime.

It checks if the number is 2, which is a prime number, and returns TRUE if it is.

If the number is even and greater than 2, it returns FALSE, as even numbers greater than 2 are

not prime.

It then iterates through odd numbers from 3 up to the square root of the input number

(sqrt(num)), checking if the number is divisible by any of them. If it is, it returns FALSE.

If the number is not divisible by any number between 3 and the square root of the input number,

it returns TRUE, indicating that the number is prime.

The code then tests the function with a specific number (num = 17 in this case) and prints

whether the number is prime or not.

SOURCE CODE

Function to check if a number is prime

is_prime<- function(num) {

if (num<= 1) {

return(FALSE) # Numbers less than or equal to 1 are not prime

 }

if (num == 2) {

return(TRUE) # 2 is a prime number

Centre for Distance Education Acharya Nagarjuna University

 }

if (num %% 2 == 0) {

return(FALSE) # Even numbers greater than 2 are not prime

 }

for (i in 3:sqrt(num)) {

if (num %% i == 0) {

return(FALSE) # If num is divisible by any number between 3 and sqrt(num), it's not prime

 }

 }

return(TRUE) # If num is not divisible by any number between 3 and sqrt(num), it's prime

}

Test the function

num<- as.integer(readline(prompt = "Enter a number: "))

if (is_prime(num)) {

print(paste(num, "is a prime number"))

} else {

print(paste(num, "is not a prime number"))

}

OUTPUT:

Test case 1:

Enter a number: 26

It is not a prime number

Test case 2:

Enter a number: 17

17 is a prime number

Big Data Analytics using R Big Data Analytics using R Lab

LAB EXERCISE 9:

Print numbers from 1 to 100 using while loop and for loop in R.

PROGRAM DESCRIPTION

Using WHILE loop:

• Initialize a variablenum to store the starting number, which is 1.

• Use a while loop to iterate as long as num is less than or equal to 100.

• Within each iteration, print the current value of num.

• Incrementnum by 1 at the end of each iteration to move to the next number.

Using FOR loop:

• Use a for loop to iterate over a sequence of numbers from 1 to 100 (1:100).

• In each iteration, the variable num takes on the next value from the sequence.

• Within each iteration, print the current value of num

SOURCE CODE : Using a while loop to print numbers from 1 to 100

i<- 1 # Initialize counter

while (i<= 100) {

 #print(i)

cat(i, '\t')

i<- i + 1 # Increment counter

}

Centre for Distance Education Acharya Nagarjuna University

OUTPUT:

 1 2 3 4 5 6 7 8 9 10 11 12

 13 14 15 16 17 18 19 20 21 22 23 24

 25 26 27 28 29 30 31 32 33 34 35 36

 37 38 39 40 41 42 43 44 45 46 47 48

 49 50 51 52 53 54 55 56 57 58 59 60

 61 62 63 64 65 66 67 68 69 70 71 72

 73 74 75 76 77 78 79 80 81 82 83 84

 85 86 87 88 89 90 91 92 93 94 95 96

 97 98 99 100 1 2 3 4 5 6 7 8

 9 10 11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30 31 32

 33 34 35 36 37 38 39 40 41 42 43 44

 45 46 47 48 49 50 51 52 53 54 55 56

 57 58 59 60 61 62 63 64 65 66 67 68

 69 70 71 72 73 74 75 76 77 78 79 80

 81 82 83 84 85 86 87 88 89 90 91 92

 93 94 95 96 97 98 99 100

SOURCE CODE :Using a for loop to print numbers from 1 to 100

for (i in 1:100) {

cat(i, '\t')

}

OUTPUT:

1 2 3 4 5 6 7 8 9 10 11 12

 13 14 15 16 17 18 19 20 21 22 23 24

 25 26 27 28 29 30 31 32 33 34 35 36

 37 38 39 40 41 42 43 44 45 46 47 48

 49 50 51 52 53 54 55 56 57 58 59 60

Big Data Analytics using R Big Data Analytics using R Lab

 61 62 63 64 65 66 67 68 69 70 71 72

 73 74 75 76 77 78 79 80 81 82 83 84

 85 86 87 88 89 90 91 92 93 94 95 96

 97 98 99 100 1 2 3 4 5 6 7 8

 9 10 11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30 31 32

 33 34 35 36 37 38 39 40 41 42 43 44

 45 46 47 48 49 50 51 52 53 54 55 56

 57 58 59 60 61 62 63 64 65 66 67 68

 69 70 71 72 73 74 75 76 77 78 79 80

 81 82 83 84 85 86 87 88 89 90 91 92

 93 94 95 96 97 98 99 100

Centre for Distance Education Acharya Nagarjuna University

LAB EXERCISE 10:

Write a program to import data from csv file and print the data on the
console.

PROGRAM DESCRIPTION

A CSV (Comma-Separated Values) file is a plain text file format commonly used for storing

tabular data. In a CSV file, each line represents a row of data, and the values within each row are

separated by commas (or other delimiters like tabs or semicolons). The first row often contains

column headers, providing names for each column in the dataset.

To create a CSV (Comma-Separated Values) file, you can use a text editor or spreadsheet

software.

The read.sv()function is used to read data from a CSV (Comma-Separated Values) file and create

a data frame. It is part of the base R package and is commonly used for importing tabular data

stored in CSV format.

SOURCE CODE

Read data from a CSV file named "StudentPerformance.csv" in the current directory

data<- read.csv("StudentsPerformance.csv")

View the structure of the data frame

str(df)

'data.frame': 1000 obs. of 8 variables:
 $ gender : Factor w/ 2 levels "female","male": 1 1 1 2 2 1 1 2 2 1 ...
 $ race.ethnicity : Factor w/ 5 levels "group A","group B",..: 2 3 2 1 3 2 2 2 4 2 ...
 $ parental.level.of.education: Factor w/ 6 levels "associate's degree",..: 2 5 4 1 5 1 5 5 3 3 ...
x $ lunch : Factor w/ 2 levels "free/reduced",..: 2 2 2 1 2 2 2 1 1 1 ...

Big Data Analytics using R Big Data Analytics using R Lab

 $ test.preparation.course : Factor w/ 2 levels "completed","none": 2 1 2 2 2 2 1 2 1 2 ...
 $ math.score : int 72 69 90 47 76 71 88 40 64 38 ...
 $ reading.score : int 72 90 95 57 78 83 95 43 64 60 ...
 $ writing.score : int 74 88 93 44 75 78 92 39 67 50 .

View the first few rows of the data frame

head(df)

Centre for Distance Education Acharya Nagarjuna University

LAB EXERCISE 3:

Write a program to demonstrate histogram in R.

PROGRAM DESCRIPTION

Histograms can be created using the hist() function in R programming language. This function

takes in a vector of values for which the histogram is plotted.

For this exercise we use the built-in datasetairquality which has Daily readings of the following

air quality values for May 1, 1973 (a Tuesday) to September 30, 1973.

Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

Solar.R: Solar radiation in Langleys in the frequency band 4000--7700 Angstroms from 0800 to

1200 hours at Central Park

Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport

Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Dataset Link:

https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/airquality

SOURCE CODE

if(!require('datasets')) {

install.packages('datasets')

library('datasets')

}

require(graphics)

pairs(airquality, panel = panel.smooth, main = "airquality data")

Big Data Analytics using R Big Data Analytics using R Lab

str(airquality)

OUTPUT:

'data.frame': 153 obs. of 6 variables:

 $ Ozone :int 41 36 12 18 NA 28 23 19 8 NA ...

 $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...

 $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...

 $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...

 $ Month :int 5 5 5 5 5 5 5 5 5 5 ...

 $ Day : int 1 2 3 4 5 6 7 8 9 10 ...

We will use the temperature parameter which has 154 observations in degrees Fahrenheit.

Centre for Distance Education Acharya Nagarjuna University

Simple histogram

Temperature <- airquality$Temp

hist(Temperature)

We can see above that there are 9 cells with equally spaced breaks. In this case, the height of a

cell is equal to the number of observations falling in that cell.

We can pass in additional parameters to control the way our plot looks.Some of the frequently

used ones are, main to give the title, xlab and ylab to provide labels for the axes, xlim and ylim

to provide range of the axes, col to define color etc. Additionally, with the argument

freq=FALSE we can get the probability distribution instead of the frequency.

Histogram with added parameters

hist(Temperature,

main="Maximum daily temperature at La Guardia Airport",

xlab="Temperature in degrees Fahrenheit",

xlim=c(50,100),

col="darkmagenta",

Big Data Analytics using R Big Data Analytics using R Lab

freq=FALSE

)

We can observe that the y axis is labeled density instead of frequency. In this case, the total area

of the histogram is equal to 1.

Return Value of hist()

The hist() function returns a list with 6 components.

create a histogram of the "Temperature" variable
h <- hist(Temperature)

print the histogram object

print(h)

OUTPUT:

$breaks

 [1] 55 60 65 70 75 80 85 90 95 100

Centre for Distance Education Acharya Nagarjuna University

$counts

[1] 8 10 15 19 33 34 20 12 2

$density

[1] 0.010457516 0.013071895 0.019607843 0.024836601 0.043137255 0.044444444

[7] 0.026143791 0.015686275 0.002614379

$mids

[1] 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5

$xname

[1] "Temperature"

$equidist

[1] TRUE

attr(,"class")

[1] "histogram"

Big Data Analytics using R Big Data Analytics using R Lab

We can observe that an object of class histogram is returned which has:

breaks- places where the breaks occur,

counts- the number of observations falling in that cell,

density- the density of cells, mids-the midpoints of cells,

xname- the x argument name and

equidist- a logical value indicating if the breaks are equally spaced or not.

We can use these values for further processing.

For example, in the following example we use the return values to place the counts on top of

each cell using the text() function.

Use Histogram return values for labels using text()

h <- hist(Temperature,ylim=c(0,40))

text(h$mids,h$counts,labels=h$counts, adj=c(0.5, -0.5))

Centre for Distance Education Acharya Nagarjuna University

Defining the Number of Breaks

With the breaks argument we can specify the number of cells we want in the histogram.

However, this number is just a suggestion.

R calculates the best number of cells, keeping this suggestion in mind. Following are two

histograms on the same data with different numbers of cells.

hist(Temperature, breaks=4, main="With breaks=4")

hist(Temperature, breaks=20, main="With breaks=20")

Big Data Analytics using R Big Data Analytics using R Lab

In the above figure we see that the actual number of cells plotted is greater than we had

specified.

We can also define breakpoints between the cells as a vector. This makes it possible to plot a

histogram with unequal intervals. In such a case, the area of the cell is proportional to the

number of observations falling inside that cell.

Histogram with non-uniform width

hist(Temperature,

main="Maximum daily temperature at La Guardia Airport",

xlab="Temperature in degrees Fahrenheit",

xlim=c(50,100),

col="chocolate",

border="brown",

breaks=c(55,60,70,75,80,100)

)

	Title Pages.pdf
	LAB-15.pdf

